The impact of Mir-9 regulation in normal and malignant hematopoiesis

  • Abbas Khosravi Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran, Islamic Republic of.
  • Shaban Alizadeh Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran, Islamic Republic of.
  • Arsalan Jalili Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran, Islamic Republic of.
  • Reza Shirzad WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran, Iran, Islamic Republic of.
  • Najmaldin Saki | Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, Islamic Republic of.


MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.


Download data is not yet available.



Napier RJ, Norris BA, Swimm A, Giver CR, Harris WA, Laval J, et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 2015;11(3):e1004770.

Chendamarai E, Ganesan S, Alex AA, Kamath V, Nair SC, Nellickal AJ, et al. Comparison of newly diagnosed and relapsed patients with acute promyelocytic leukemia treated with arsenic trioxide: insight into mechanisms of resistance. PloS one. 2015;10(3):e0121912.

Ell B, Kang Y. MicroRNAs as regulators of bone homeostasis and bone metastasis. BoneKEy reports. 2014;3.

Bartel DP. MicroRNAs: target recognition and regulatory functions. cell. 2009;136(2):215-33.

Zhang H, Li Y, Lai M. The microRNA network and tumor metastasis. Oncogene. 2010;29(7):937-48.

Di Leva G, Croce CM. Roles of small RNAs in tumor formation. Trends in molecular medicine. 2010;16(6):257-67.

Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148(6):1172-87.

Newman MA, Hammond SM. Emerging paradigms of regulated microRNA processing. Genes & development. 2010;24(11):1086-92.

Chung SS, Hu W, Park CY. The role of microRNAs in hematopoietic stem cell and leukemic stem cell function. Therapeutic advances in hematology. 2011;2(5):317-34.

Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L. MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nature neuroscience. 2008;11(6):641-8.

Wang LQ, Kwong YL, Kho CSB, Wong KF, Wong KY, Ferracin M, et al. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia-implications on constitutive activation of NFκB pathway. Molecular cancer. 2013;12(1):1.

Nie K, Gomez M, Landgraf P, Garcia J-F, Liu Y, Tan LH, et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. The American journal of pathology. 2008;173(1):242-52.

Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman‐Gomez J, et al. Epigenetic regulation of microRNA expression in colorectal cancer. International journal of cancer. 2009;125(11):2737-43.

Guo LM, Pu Y, Han Z, Liu T, Li YX, Liu M, et al. MicroRNA‐9 inhibits ovarian cancer cell growth through regulation of NF‐κB1. FEBS journal. 2009;276(19):5537-46.

Luo H, Zhang H, Zhang Z, Zhang X, Ning B, Guo J, et al. Down-regulated miR-9 and miR-433 in human gastric carcinoma. Journal of Experimental & Clinical Cancer Research. 2009;28(1):1.

Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian‐Keissar H, Schlosberg A, et al. MiR‐92b and miR‐9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain pathology. 2009;19(3):375-83.

Hao-Xiang T, Qian W, Lian-Zhou C, Xiao-Hui H, Jin-Song C, Xin-Hui F, et al. MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Medical Oncology. 2010;27(3):654-60.

Hu X, Schwarz JK, Lewis JS, Huettner PC, Rader JS, Deasy JO, et al. A microRNA expression signature for cervical cancer prognosis. Cancer research. 2010;70(4):1441-8.

Myatt SS, Wang J, Monteiro LJ, Christian M, Ho K-K, Fusi L, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer research. 2010;70(1):367-77.

Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y. MiR‐9 downregulates CDX2 expression in gastric cancer cells. International Journal of Cancer. 2011;129(11):2611-20.

Heller G, Weinzierl M, Noll C, Babinsky V, Ziegler B, Altenberger C, et al. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non–small cell lung cancers. Clinical Cancer Research. 2012;18(6):1619-29.

Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proceedings of the National Academy of Sciences. 2008;105(36):13556-61.

Hildebrandt M, Gu J, Lin J, Ye Y, Tan W, Tamboli P, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29(42):5724-8.

Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature cell biology. 2010;12(3):247-56.

Rodriguez‐Otero P, Román‐Gómez J, Vilas‐Zornoza A, José‐Eneriz ES, Martín‐Palanco V, Rifón J, et al. Deregulation of FGFR1 and CDK6 oncogenic pathways in acute lymphoblastic leukaemia harbouring epigenetic modifications of the MIR9 family. British journal of haematology. 2011;155(1):73-83.

Senyuk V, Zhang Y, Liu Y, Ming M, Premanand K, Zhou L, et al. Critical role of miR-9 in myelopoiesis and EVI1-induced leukemogenesis. Proceedings of the National Academy of Sciences. 2013;110(14):5594-9.

Crans H, Sakamoto K. Transcription factors and translocations in lymphoid and myeloid leukemia. Leukemia. 2001;15(3):313.

Gamal Abdul Hamid AN. Clinicoepidemiological features of adult leukemias in Aden, Yemen. Indian Journal of Applied Research. 2015;5(7).

Spike BT, Macleod KF. The Rb tumor suppressor in stress responses and hematopoietic homeostasis. Cell cycle. 2005;4(1):42-5.

Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies. Frontiers in cell and developmental biology. 2015;3.

Singh AM, Chappell J, Trost R, Lin L, Wang T, Tang J, et al. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells. Stem cell reports. 2014;2(3):398.

Sandal T. Molecular aspects of the mammalian cell cycle and cancer. The oncologist. 2002;7(1):73-81.

de Boer HR, Llobet SG, van Vugt MA. Controlling the response to DNA damage by the APC/C-Cdh1. Cellular and Molecular Life Sciences. 2016;73(5):949-60.

Bueno MJ, Malumbres M. MicroRNAs and the cell cycle. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2011;1812(5):592-601.

Diehl JA. Cycling to cancer with cyclin D1. Cancer biology & therapy. 2002;1(3):226-31.

Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, et al. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PloS one. 2013;8(1):e55719.

Chaves-Ferreira M, Krenn G, Vasseur F, Barinov A, Gonçalves P, Azogui O, et al. The cyclin D1 carboxyl regulatory domain controls the division and differentiation of hematopoietic cells. Biology direct. 2016;11(1):1.

Aref S, Mabed M, El-Sherbiny M, Selim T, Metwaly A. Cyclin D1 expression in acute leukemia. Hematology. 2013.

Liu J-H, Yen C-C, Lin Y-C, Gau J-P, Yang M-H, Chao T-C, et al. Overexpression of Cyclin D1 in Accelerated-Phase Chronic Myeloid Leukemia. Leukemia & Lymphoma. 2004;45(12):2419-25.

Skaar JR, Pagano M. Cdh1: a master G0/G1 regulator. Nature cell biology. 2008;10(7):755-7.

Qiao X, Zhang L, Gamper AM, Fujita T, Wan Y. APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity. Cell Cycle. 2010;9(19):3904-12.

Melki JR, Vincent PC, Brown RD, Clark SJ. Hypermethylation of E-cadherin in leukemia. Blood. 2000;95(10):3208-13.

Jordaan G, Liao W, Sharma S. E-cadherin gene re-expression in chronic lymphocytic leukemia cells by HDAC inhibitors. BMC cancer. 2013;13(1):1.

Maroulakou IG, Bowe DB. Expression and function of Ets transcription factors in mammalian development: a regulatory network. Oncogene. 2000;19(55):6432-42.

Singh AK, Swarnalatha M, Kumar V. c-ETS1 facilitates G1/S-phase transition by up-regulating cyclin E and CDK2 genes and cooperates with hepatitis B virus X protein for their deregulation. Journal of Biological Chemistry. 2011;286(25):21961-70.

Meng F-k, Sun H-y, Tan X-y, Li C-r, Zhou J-f, Liu W-l. Negative regulation of cyclin D3 expression by trans-cription factor c-Ets1 in umbilical cord hematopoietic cells. Acta Pharmacologica Sinica. 2011;32(9):1159-64.

Pei H, Li C, Adereth Y, Hsu T, Watson DK, Li R. Caspase-1 is a direct target gene of ETS1 and plays a role in ETS1-induced apoptosis. Cancer research. 2005;65(16):7205-13.

Qiao N, Xu C, Zhu Y, Cao Y, Liu D, Han X. Ets-1 as an early response gene against hypoxia-induced apoptosis in pancreatic β-cells. Cell death & disease. 2015;6(2):e1650.

Lulli V, Romania P, Riccioni R, Boe A, Lo-Coco F, Testa U, et al. Transcriptional silencing of Ets-1 oncogene contributes to human granulocytic differentiation. haematologica. 2010:haematol. 2010.023267.

John SA, Clements JL, Russell LM, Garrett-Sinha LA. Ets-1 regulates plasma cell differentiation by interfering with the activity of the transcription factor Blimp-1. Journal of Biological Chemistry. 2008;283(2):951-62.

Lulli V, Romania P, Morsilli O, Gabbianelli M, Pagliuca A, Mazzeo S, et al. Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation. Cell Death & Differentiation. 2006;13(7):1064-74.

Weidner H, Bill M, Schmalbrock L, Jentzsch M, Kloss L, Gaber T, et al. High Expression of Mir-9 down-Regulates the Poor Outcome Prognosticator ERG and Associates with Reduced Relapse-Rates in Acute Myeloid Leukemia. Blood. 2014;124(21):1575-.

González‐Murillo Á, Fernández L, Baena S, Melen GJ, Sánchez R, Sánchez‐Valdepeñas C, et al. The NFKB inducing kinase modulates hematopoiesis during stress. Stem Cells. 2015;33(9):2825-37.

Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-κB and cell-cycle regulation: the cyclin connection. Cytokine & growth factor reviews. 2001;12(1):73-90.

Bottero V, Withoff S, Verma I. NF-κB and the regulation of hematopoiesis. Cell Death & Differentiation. 2006;13(5):785-97.

Wong HK, Tsokos GC. Fas (CD95) ligation inhibits activation of NF-κB by targeting p65-Rel A in a caspase-dependent manner. Clinical Immunology. 2006;121(1):47-53.

Wang L, Zhao S, Wang H-X, Zou P. Inhibition of NF-kappa B can enhance Fas-mediated apoptosis in leukemia cell line HL-60. Frontiers of medicine in China. 2010;4(3):323-8.

Zhang H, Zhu L, He H, Zhu S, Zhang W, Liu X, et al. NF-kappa B mediated Up-regulation of CCCTC-binding factor in pediatric acute lymphoblastic leukemia. Molecular cancer. 2014;13(1):1.

Bosman MCJ, Schuringa JJ, Vellenga E. Constitutive NF-κB activation in AML: Causes and treatment strategies. Critical reviews in oncology/hematology. 2016;98:35-44.

Rushworth SA, Murray MY, Barrera LN, Heasman S-A, Zaitseva L, MacEwan DJ. Understanding the role of miRNA in regulating NF-κB in blood cancer. American journal of cancer research. 2012;2(1):65.

Modak C. Serum response factor: look into the gut. World journal of gastroenterology. 2010;16(18).

Poser S, Impey S, Trinh K, Xia Z, Storm DR. SRF‐dependent gene expression is required for PI3‐kinase‐regulated cell proliferation. The EMBO journal. 2000;19(18):4955-66.

Ragu C, Elain G, Mylonas E, Ottolenghi C, Cagnard N, Daegelen D, et al. The transcription factor Srf regulates hematopoietic stem cell adhesion. Blood. 2010;116(22):4464-73.

Buller B, Chopp M, Ueno Y, Zhang L, Zhang RL, Morris D, et al. Regulation of serum response factor by miRNA‐200 and miRNA‐9 modulates oligodendrocyte progenitor cell differentiation. Glia. 2012;60(12):1906-14.

Yan L, Lavin VA, Moser LR, Cui Q, Kanies C, Yang E. PP2A regulates the pro-apoptotic activity of FOXO1. Journal of Biological Chemistry. 2008;283(12):7411-20.

Furukawa-Hibi Y, Kobayashi Y, Chen C, Motoyama N. FOXO transcription factors in cell-cycle regulation and the response to oxidative stress. Antioxidants & redox signaling. 2005;7(5-6):752-60.

Yuan C, Wang L, Zhou L, Fu Z. The function of FOXO1 in the late phases of the cell cycle is suppressed by PLK1-mediated phosphorylation. Cell Cycle. 2014;13(5):807-19.

Sang T, Cao Q, Wang Y, Liu F, Chen S. Overexpression or silencing of FOXO3a affects proliferation of endothelial progenitor cells and expression of cell cycle regulatory proteins. PloS one. 2014;9(8):e101703.

Liang R, Rimmelé P, Bigarella CL, Yalcin S, Ghaffari S. Evidence for AKT-independent regulation of FOXO1 and FOXO3 in haematopoietic stem and progenitor cells. Cell Cycle. 2016;15(6):861-7.

Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B, et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell. 2011;146(5):697-708.

Wagle M, Eiring A, Wongchenko M, Lu S, Guan Y, Wang Y, et al. A role for FOXO1 in BCR–ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Leukemia. 2016.

Demir S, Wang F, Gehringer F, Weitzer C, Debatin K-M, Wirth T, et al. FOXO1 Is Involved in the Regulation of B-Cell Precursor Acute Lymphoblastic Leukemia Survival and Serves As a Novel Target for Directed Therapy. Am Soc Hematology; 2016.

Zhao J, Lu Q, Niu X, Zhang P, Wang Z, Lin J, et al. [Expression of FoxO3a in patients with acute myeloid leukemia and its clinical significance]. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui= Journal of experimental hematology/Chinese Association of Pathophysiology. 2013;21(4):847-50.

Zhu H. Targeting forkhead box transcription factors FOXM1 and FOXO in leukemia (Review). Oncology reports. 2014;32(4):1327-34.

Chen X, Zhu L, Ma Z, Sun G, Luo X, Li M, et al. Oncogenic miR-9 is a target of erlotinib in NSCLCs. Scientific reports. 2015;5.

Russell P, Hennessy B, Li J, Carey M, Bast R, Freeman T, et al. Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Oncogene. 2012;31(19):2450-60.

Kimura SH, Ikawa M, Ito A, Okabe M, Nojima H. Cyclin G1 is involved in G2/M arrest in response to DNA damage and in growth control after damage recovery. Oncogene. 2001;20(25).

Seo H, Lee D, Lee H, Baek M, Bae S, Soh J, et al. Cyclin G1 overcomes radiation-induced G2 arrest and increases cell death through transcriptional activation of cyclin B1. Cell Death & Differentiation. 2006;13(9):1475-84.

Chen H, Lin D, Luo L, Hu J. [Expression of P27 (kip1) and cyclin G in patients with acute leukemia and its correlation]. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui= Journal of experimental hematology/Chinese Association of Pathophysiology. 2009;17(4):847-51.

Li X, Pan Q, Wan X, Mao Y, Lu W, Xie X, et al. Methylation-associated Has-miR-9 deregulation in paclitaxel-resistant epithelial ovarian carcinoma. BMC cancer. 2015;15(1):1.

Mukherjee P, Winter SL, Alexandrow MG. Cell cycle arrest by transforming growth factor β1 near G1/S is mediated by acute abrogation of prereplication complex activation involving an Rb-MCM interaction. Molecular and cellular biology. 2010;30(3):845-56.

Isufi I, Seetharam M, Zhou L, Sohal D, Opalinska J, Pahanish P, et al. Transforming growth factor-β signaling in normal and malignant hematopoiesis. Journal of Interferon & Cytokine Research. 2007;27(7):543-52.

Fortunel NO, Hatzfeld A, Hatzfeld JA. Transforming growth factor-β: pleiotropic role in the regulation of hematopoiesis. Blood. 2000;96(6):2022-36.

Fierro‐Fernández M, Busnadiego Ó, Sandoval P, Espinosa‐Díez C, Blanco‐Ruiz E, Rodríguez M, et al. miR‐9‐5p suppresses pro‐fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO reports. 2015;16(10):1358-77.

Yao H, Goldman DC, Nechiporuk T, Kawane S, McWeeney SK, Tyner JW, et al. Corepressor Rcor1 is essential for murine erythropoiesis. Blood. 2014;123(20):3175-84.

Yao H, Goldman DC, Fan G, Mandel G, Fleming WH. The corepressor Rcor1 is essential for normal myeloerythroid lineage differentiation. Stem Cells. 2015;33(11):3304-14.

Chen P, Price C, Li Z, Li Y, Cao D, Wiley A, et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia–rearranged leukemia. Proceedings of the National Academy of Sciences. 2013;110(28):11511-6.

Emmrich S, Katsman-Kuipers J, Henke K, Khatib M, Jammal R, Engeland F, et al. miR-9 is a tumor suppressor in pediatric AML with t (8; 21). Leukemia. 2014;28(5):1022-32.

Sugita F, Maki K, Nakamura Y, Sasaki K, Mitani K. Overexpression of MIR9 indicates poor prognosis in acute lymphoblastic leukemia. Leukemia & lymphoma. 2014;55(1):78-86.

Marcucci G, Mrózek K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 2011;117(4):1121-9.

Scholl C, Bansal D, Döhner K, Eiwen K, Huntly BJ, Lee BH, et al. The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis. The Journal of clinical investigation. 2007;117(4):1037-48.

Lau P, Verrier JD, Nielsen JA, Johnson KR, Notterpek L, Hudson LD. Identification of dynamically regulated microRNA and mRNA networks in developing oligodendrocytes. The Journal of Neuroscience. 2008;28(45):11720-30.

Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, et al. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY). 2010;2(7):415-31.

Chen W, Bhatia R. Roles of SIRT1 in leukemogenesis. Current opinion in hematology. 2013;20(4).

Song Y, Mu L, Han X, Li Q, Dong B, Li H, et al. MicroRNA-9 inhibits vasculogenic mimicry of glioma cell lines by suppressing Stathmin expression. Journal of neuro-oncology. 2013;115(3):381-90.

Machado-Neto JA, Saad S, Traina F. Stathmin 1 in normal and malignant hematopoiesis. BMB Rep. 2014;47(12):660-5.

Liu H, Cao H-q, Ta J-b, Zhang W, Liu Y-h. Knockdown of Peripheral Myelin Protein 22 Inhibits the Progression of Chronic Myeloid Leukemia. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics. 2015;22(5-6):259-65.

Li J, Kleeff J, Esposito I, Kayed H, Felix K, Giese T, et al. Expression analysis of PMP22/Gas3 in premalignant and malignant pancreatic lesions. Journal of Histochemistry & Cytochemistry. 2005;53(7):885-93.

Tong D, Heinze G, Pils D, Wolf A, Singer CF, Concin N, et al. Gene expression of PMP22 is an independent prognostic factor for disease-free and overall survival in breast cancer patients. BMC cancer. 2010;10(1):1.

Ashton JM, Balys M, Neering SJ, Hassane DC, Cowley G, Root DE, et al. Gene sets identified with oncogene cooperativity analysis regulate in vivo growth and survival of leukemia stem cells. Cell stem cell. 2012;11(3):359-72.

Imai S-I, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795-800.

Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Molecular cell. 2004;16(1):93-105.

Vaquero A. The conserved role of sirtuins in chromatin regulation. International Journal of Developmental Biology. 2009;53(2-3):303-22.

Saunders L, Verdin E. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene. 2007;26(37):5489-504.

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nature reviews Molecular cell biology. 2012;13(4):225-38.

Audrito V, Vaisitti T, Rossi D, Gottardi D, D'Arena G, Laurenti L, et al. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer research. 2011;71(13):4473-83.

Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, et al. Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer cell. 2012;21(2):266-81.

Sasca D, Hähnel PS, Szybinski J, Khawaja K, Kriege O, Pante SV, et al. SIRT1 prevents genotoxic stress-induced p53 activation in acute myeloid leukemia. Blood. 2014;124(1):121-33.

Jin Y, Cao Q, Chen C, Du X, Jin B, Pan J. Tenovin-6-mediated inhibition of SIRT1/2 induces apoptosis in acute lymphoblastic leukemia (ALL) cells and eliminates ALL stem/progenitor cells. BMC cancer. 2015;15(1):1.

Oikawa T. ETS transcription factors: possible targets for cancer therapy. Cancer science. 2004;95(8):626-33.

Rücker FG, Bullinger L, Schwaenen C, Lipka DB, Wessendorf S, Fröhling S, et al. Disclosure of candidate genes in acute myeloid leukemia with complex karyotypes using microarray-based molecular characterization. Journal of clinical oncology. 2006;24(24):3887-94.

Tyybäkinoja A, Saarinen‐Pihkala U, Elonen E, Knuutila S. Amplified, lost, and fused genes in 11q23–25 amplicon in acute myeloid leukemia, an array‐CGH study. Genes, Chromosomes and Cancer. 2006;45(3):257-64.

Mrózek K, editor. Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Seminars in oncology; 2008. Elsevier.

Ha Kim G, Am Song G, Youn Park D, Han Lee S, Hyun Lee D, Oh Kim T, et al. CDX2 expression is increased in gastric cancers with less invasiveness and intestinal mucin phenotype. Scandinavian journal of gastroenterology. 2006;41(8):880-6.

Wang X-T, Wei W-Y, Kong F-B, Lian C, Luo W, Xiao Q, et al. Prognostic significance of Cdx2 immunohistochemical expression in gastric cancer: a meta-analysis of published literatures. Journal of Experimental & Clinical Cancer Research. 2012;31(1):1.

Riedt T, Ebinger M, Salih HR, Tomiuk J, Handgretinger R, Kanz L, et al. Aberrant expression of the homeobox gene CDX2 in pediatric acute lymphoblastic leukemia. Blood. 2009;113(17):4049-51.

Thoene S, Rawat V, Heilmeier B, Hoster E, Metzeler K, Herold T, et al. The homeobox gene CDX2 is aberrantly expressed and associated with an inferior prognosis in patients with acute lymphoblastic leukemia. Leukemia. 2009;23(4):649-55.

Arnaoaut HH, Mokhtar DA, Samy RM, Khames SA, Omar SA. CDX2 gene expression in acute lymphoblastic leukemia. Journal of the Egyptian National Cancer Institute. 2014;26(2):55-9.

Zebedee Z, Hara E. Id proteins in cell cycle control and cellular senescence. Oncogene. 2001;20(58).

Annibali D, Gioia U, Savino M, Laneve P, Caffarelli E, Nasi S. A new module in neural differentiation control: two microRNAs upregulated by retinoic acid, miR-9 and-103, target the differentiation inhibitor ID2. PLoS One. 2012;7(7):e40269.

Lasorella A, Iavarone A, Israel M. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Molecular and cellular biology. 1996;16(6):2570-8.

Ishiguro A, Spirin KS, Shiohara M, Tobler A, Gombart AF, Israel MA, et al. Id2 expression increases with differentiation of human myeloid cells. Blood. 1996;87(12):5225-31.

May AM, Frey A-V, Bogatyreva L, Benkisser-Petersen M, Hauschke D, Lübbert M, et al. ID2 and ID3 protein expression mirrors granulopoietic maturation and discriminates between acute leukemia subtypes. Histochemistry and cell biology. 2014;141(4):431-40.

Weiler S, Ademokun JA, Norton JD. ID helix-loop-helix proteins as determinants of cell survival in B-cell chronic lymphocytic leukemia cells in vitro. Molecular cancer. 2015;14(1):1.

Davila JL, Goff LA, Ricupero CL, Camarillo C, Oni EN, Swerdel MR, et al. A positive feedback mechanism that regulates expression of miR-9 during neurogenesis. PloS one. 2014;9(4):e94348.

Pon JR, Marra MA. MEF2 transcription factors: developmental regulators and emerging cancer genes. Oncotarget. 2016;7(3):2297.

Canté-Barrett K, Pieters R, Meijerink J. Myocyte enhancer factor 2C in hematopoiesis and leukemia. Oncogene. 2014;33(4):403-10.

Laszlo GS, Alonzo TA, Gudgeon CJ, Harrington KH, Kentsis A, Gerbing RB, et al. Erratum to: High expression of myocyte enhancer factor 2C (MEF2C) is associated with adverse-risk features and poor outcome in pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. Journal of Hematology & Oncology. 2016;9(1):133.

Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M, et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer cell. 2011;19(4):484-97.

Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Research. 2017:gkx1013-gkx.

Kong NR, Davis M, Chai L, Winoto A, Tjian R. MEF2C and EBF1 Co-regulate B Cell-Specific Transcription. PLoS Genet. 2016;12(2):e1005845.

Lu J, McKinsey TA, Nicol RL, Olson EN. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proceedings of the National Academy of Sciences. 2000;97(8):4070-5.

Platanias LC. Map kinase signaling pathways and hematologic malignancies. Blood. 2003;101(12):4667-79.

Ringshausen I, Dechow T, Schneller F, Weick K, Oelsner M, Peschel C, et al. Constitutive activation of the MAPkinase p38 is critical for MMP-9 production and survival of B-CLL cells on bone marrow stromal cells. Leukemia. 2004;18(12):1964-70.

Bradbury C, Khanim F, Hayden R, Bunce C, White D, Drayson M, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia. 2005;19(10):1751-9.

Kafeel MI, Avezbakiyev B, Chen C, Sun Y, Rathnasabapathy C, Kalavar M, et al. Histone Deacetylase Activity In Chronic Lymphocytic Leukemia. Blood. 2010;116(21):4622-.

Stankov MV, El Khatib M, Thakur BK, Heitmann K, Panayotova-Dimitrova D, Schoening J, et al. Histone deacetylase inhibitors induce apoptosis in myeloid leukemia by suppressing autophagy. Leukemia. 2014;28(3):577-88.

Imai Y, Maru Y, Tanaka J. Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies. Cancer Science. 2016.

Li Y, Zhao K, Yao C, Kahwash S, Tang Y, Zhang G, et al. Givinostat, a type II histone deacetylase inhibitor, induces potent caspase-dependent apoptosis in human lymphoblastic leukemia. Genes & Cancer. 2016;7(9-10):292.

Wen AY, Sakamoto KM, Miller LS. The role of the transcription factor CREB in immune function. The Journal of Immunology. 2010;185(11):6413-9.

Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I, Caffarelli E. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic acids research. 2010;38(20):6895-905.

Crans-Vargas HN, Landaw EM, Bhatia S, Sandusky G, Moore TB, Sakamoto KM. Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. Blood. 2002;99(7):2617-9.

Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, et al. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer cell. 2005;7(4):351-62.

Shankar DB, Cheng JC, Sakamoto KM. Role of cyclic AMP response element binding protein in human leukemias. Cancer. 2005;104(9):1819-24.

Cheng JC, Esparza S, Sandoval S, Shankar D, Fu C, Sakamoto KM. Potential role of CREB as a prognostic marker in acute myeloid leukemia. 2007.

Tan YS, Kim M, Kingsbury TJ, Civin CI, Cheng W-C. Regulation of RAB5C is important for the growth inhibitory effects of MiR-509 in human precursor-B acute lymphoblastic leukemia. PloS one. 2014;9(11):e111777.

Goswami CP, Nakshatri H. PROGmiR: a tool for identifying prognostic miRNA biomarkers in multiple cancers using publicly available data. Journal of clinical bioinformatics. 2012;2(1):23.

Alizadeh S, Azizi SG, Soleimani M, Farshi Y, Khatib ZK. The role of microRNAs in myeloproliferative neoplasia. International journal of hematology-oncology and stem cell research. 2016;10(3):172.

Kouhkan F, Alizadeh S, Kaviani S, Soleimani M, Pourfathollah AA, Amirizadeh N, et al. miR-155 down regulation by LNA inhibitor can reduce cell growth and proliferation in PC12 cell line. Avicenna journal of medical biotechnology. 2011;3(2):61.

Minayi N, Alizadeh S, Dargahi H, Soleimani M, Khatib ZK, Tayebi B, et al. The effect of miR-210 Up-regulation on proliferation and survival of mouse bone marrow derived mesenchymal stem cell. International journal of hematology-oncology and stem cell research. 2014;8(1):15.

Ewerth D, Schmidts A, Hein M, Schnerch D, Kvainickas A, Greil C, et al. Suppression of APC/CCdh1 has subtype specific biological effects in acute myeloid leukemia. Oncotarget. 2016;7(30):48220.

Zhang T-j, Zhou J-d, Ma J-c, Deng Z-q, Qian Z, Yao D-m, et al. CDH1 (E-cadherin) expression independently affects clinical outcome in acute myeloid leukemia with normal cytogenetics. Clinical Chemistry and Laboratory Medicine (CCLM). 2017;55(1):123-31.

MiR-9, leukemia, tumor suppressor, oncogene
Abstract views: 899

PDF: 528
HTML: 14
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
Khosravi, A., Alizadeh, S., Jalili, A., Shirzad, R., & Saki, N. (2018). The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncology Reviews, 12(1).

Most read articles by the same author(s)