Mitotic quiescence in hepatic cancer stem cells: An incognito mode

  • Kandasamy Ashokachakkaravarthy Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
  • Biju Pottakkat | bijupottakkat@gmail.com Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.

Abstract

Hepatocellular carcinoma represents one of the most aggressive cancers with high recurrence rates. The high recurrence is a major problem in the management of this disease. Cancer stem cells (CSCs) are often regarded as the basis of cancer recurrence. The anti-proliferative therapy kills the proliferating cells but induces mitotic quiescence in CSCs which remain as residual dormant CSCs. Later on, withdrawal of treatment reactivates the residual CSCs from dormancy to produce new cancer cells. The proliferation of these newly formed cancer cells initiates new tumor formation in the liver leading to tumor recurrence. HCC cells evade the immune surveillance via modulating the key immune cells by alpha feto-protein (AFP) secreted from CSCs or hepatic progenitor cells. This AFP mediated immune evasion assists in establishing new tumors by cancer cells in the liver. In this review, we will summarise the CSC mechanisms of recurrence, mitotic quiescence, dormancy and reactivation of CSCs, metastasis and immune evasion of hepatocellular carcinoma.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Ananthakrishnan A, Gogineni V, Saeian K. Epidemiology of primary and secondary liver cancers. Semin Intervent Radiol 2006;23:047-63. DOI: https://doi.org/10.1055/s-2006-939841

Forman D, Mathers C, Soerjomataram I, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2014;136:E359-86. DOI: https://doi.org/10.1002/ijc.29210

Liu CY, Chen KF, Chen PJ. Treatment of liver cancer. Cold Spring Harbor Perspect Med 2015;5:1-16. DOI: https://doi.org/10.1101/cshperspect.a021535

Crissien AM, Frenette C. Current management of hepatocellular carcinoma. Gastroenterol Hepatol 2014;10:153-61.

Au JS, Frenette CT. Management of hepatocellular carcinoma: Current status and future directions. Gut Liver 2015;9:437-48. DOI: https://doi.org/10.5009/gnl15022

Abbott A. Cancer: the root of the problem. Nature 2006;442:742-3. DOI: https://doi.org/10.1038/442742a

Wang K, Wu X, Wang J, Huang J. Cancer stem cell theory: therapeutic implications for nanomedicine. Int J Nanomed 2013;8:899-908.

Matthai SM, Ramakrishna B. Cancer stem cells in hepatocellular carcinoma--an immunohistochemical study with histopathological association. Indian J Med Res 2015;142:391-8. DOI: https://doi.org/10.4103/0971-5916.169195

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-11. DOI: https://doi.org/10.1038/35102167

Fialkow PJ. Stem cell origin of human myeloid blood cell neoplasms. Verh Dtsch Ges Pathol 1990;74:43-7.

Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994;367:645-8. DOI: https://doi.org/10.1038/367645a0

Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol 2007;23:675-99. DOI: https://doi.org/10.1146/annurev.cellbio.22.010305.104154

Pierce GB, Wallace C. Differentiation of malignant to benign cells. Cancer Res 1971;31:127-34.

Aponte PM, Caicedo A. Stemness in cancer: stem cells, cancer stem cells, and their microenvironment. Stem Cells Int 2017;2017:5619472.

Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells 2015;7:27-36. DOI: https://doi.org/10.4252/wjsc.v7.i1.27

Lavau C, Szilvassy SJ, Slany R, Cleary ML. Immortalization and leukemic transformation of a myelomonocytic precursor by retrovirally transduced HRX-ENL. EMBO J 1997;16:4226-37. DOI: https://doi.org/10.1093/emboj/16.14.4226

Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006;442:818-22. DOI: https://doi.org/10.1038/nature04980

So CW, Karsunky H, Wong P, et al. Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. Blood 2004;103:3192-9. DOI: https://doi.org/10.1182/blood-2003-10-3722

Friedmann-Morvinski D, Verma IM. Dedifferentiation and reprogramming: origins of cancer stem cells. EMBO Rep 2014;15:244-53. DOI: https://doi.org/10.1002/embr.201338254

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126:663-76. DOI: https://doi.org/10.1016/j.cell.2006.07.024

Liu X, Huang J, Chen T, et al. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res 2008;18:1177-89. DOI: https://doi.org/10.1038/cr.2008.309

Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131:861-72. DOI: https://doi.org/10.1016/j.cell.2007.11.019

Malik N, Rao MS. A review of the methods for human iPSC derivation. Methods Mol Biol 2013;997:23-33. DOI: https://doi.org/10.1007/978-1-62703-348-0_3

Tajima H, Ohta T, Okamoto K, et al. Radiofrequency ablation induces dedifferentiation of hepatocellular carcinoma. Oncol Lett 2010;1:91-4. DOI: https://doi.org/10.3892/ol_00000016

Yang SD, Lee SC, Chang HC. Heat stress induces tyrosine phosphorylation/activation of kinase FA/GSK-3 alpha (a human carcinoma dedifferentiation modulator) in A431 cells. J Cell Biochem 1997;66:16-26. DOI: https://doi.org/10.1002/(SICI)1097-4644(19970701)66:1<16::AID-JCB3>3.0.CO;2-0

Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977;197:461-3. DOI: https://doi.org/10.1126/science.560061

Bonnet D, Dick JE. Human acute myeloid leukaemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997;3:730-7. DOI: https://doi.org/10.1038/nm0797-730

Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012;21:283-96. DOI: https://doi.org/10.1016/j.ccr.2012.03.003

Rountree CB, Barsky L, Ge S, et al. A CD133-expressing murine liver oval cell population with bilineage potential. Stem Cells 2007;25:2419-29. DOI: https://doi.org/10.1634/stemcells.2007-0176

Ma S, Chan KW, Hu L, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 2007;132:2542-56. DOI: https://doi.org/10.1053/j.gastro.2007.04.025

Cai Z, Xu K, Li Y, et al. Long noncoding RNA in liver cancer stem cells. Discov Med 2017;24:87-93.

Xiang Y, Yang T, Pang BY, et al. The progress and prospects of putative biomarkers for liver cancer stem cells in hepatocellular carcinoma. Stem Cells Int 2016;2016:7614971. DOI: https://doi.org/10.1155/2016/7614971

Qadir AS, Ceppi P, Brockway S, et al. CD95/Fas Increases Stemness in Cancer Cells by Inducing a STAT1-Dependent Type I Interferon Response. Cell Rep 2017;18:2373-86. DOI: https://doi.org/10.1016/j.celrep.2017.02.037

Fang T, Lv H, Wu F, et al. Musashi 2 contributes to the stemness and chemoresistance of liver cancer stem cells via LIN28A activation. Cancer Lett 2017;384:50-9. DOI: https://doi.org/10.1016/j.canlet.2016.10.007

Li N, Zhu Y. Targeting liver cancer stem cells for the treatment of hepatocellular carcinoma. Ther Adv Gastroenterol 2019;12:1756284818821560. DOI: https://doi.org/10.1177/1756284818821560

Zhai B, Zhang X, Sun B, et al. MK2206 overcomes the resistance of human liver cancer stem cells to sorafenib by inhibition of pAkt and upregulation of pERK. Tumour Biol 2016;37:8047-55. DOI: https://doi.org/10.1007/s13277-015-4707-1

Wang N, Wang S, Li MY, et al. Cancer stem cells in hepatocellular carcinoma: an overview and promising therapeutic strategies. Ther Adv Med Oncol 2018;10:1758835918816287. DOI: https://doi.org/10.1177/1758835918816287

Vu NB, Nguyen TT, Tran LC, et al. Doxorubicin and 5-fluorouracil resistant hepatic cancer cells demonstrate stem-like properties. Cytotechnology 2013;65:491-503. DOI: https://doi.org/10.1007/s10616-012-9511-9

Mancuso A. Management of hepatocellular carcinoma: Enlightening the gray zones. World J Hepatol 2013;5:302-10. DOI: https://doi.org/10.4254/wjh.v5.i6.302

Wong R, Frenette C. Updates in the management of hepatocellular carcinoma. Gastroenterol Hepatol 2011;7:16-24.

Dong S, Wang Z, Wu L, Qu Z. Effect of surgical margin in R0 hepatectomy on recurrence-free survival of patients with solitary hepatocellular carcinomas without macroscopic vascular invasion. Medicine 2016;95:e5251. DOI: https://doi.org/10.1097/MD.0000000000005251

Lee W, Han HS, Ahn S, et al. Correlation between Resection Margin and Disease Recurrence with a Restricted Cubic Spline Model in Patients with Resected Hepatocellular Carcinoma. Dig Surg 2018;35:520-31. DOI: https://doi.org/10.1159/000485805

Guo Z, Li LQ, Jiang JH, et al. Cancer stem cell markers correlate with early recurrence and survival in hepatocellular carcinoma. World J Gastroenterol 2014;20:2098-106. DOI: https://doi.org/10.3748/wjg.v20.i8.2098

Ho DW, Lo RC, Chan LK, Ng IO. Molecular Pathogenesis of Hepatocellular Carcinoma. Liver Cancer 2016;5:290-302. DOI: https://doi.org/10.1159/000449340

Muramatsu S, Tanaka S, Mogushi K, et al. Visualization of stem cell features in human hepatocellular carcinoma reveals in vivo significance of tumor-host interaction and clinical course. Hepatology 2013;58:218-28. DOI: https://doi.org/10.1002/hep.26345

Martin-Padura I, Marighetti P, Agliano A, et al. Residual dormant cancer stem-cell foci are responsible for tumor relapse after antiangiogenic metronomic therapy in hepatocellular carcinoma xenografts. Lab Invest 2012;92:952-66. DOI: https://doi.org/10.1038/labinvest.2012.65

Hadfield G. The dormant cancer cell. Br Med J 1954;2:607-10. DOI: https://doi.org/10.1136/bmj.2.4888.607

Gao XL, Zhang M, Tang YL, Liang XH. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther 2017;10:5219-28. DOI: https://doi.org/10.2147/OTT.S140854

Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence. Mol Biol Rep 2016;43:1213-20. DOI: https://doi.org/10.1007/s11033-016-4065-0

Demidenko ZN, Zubova SG, Bukreeva EI, et al. Rapamycin decelerates cellular senescence. Cell Cycle 2009;8:1888-95. DOI: https://doi.org/10.4161/cc.8.12.8606

Cooper S. On the proposal of a G0 phase and the restriction point. FASEB J 1998;12:367-73. DOI: https://doi.org/10.1096/fasebj.12.3.367

Zhu X, Raina AK, Smith MA. Cell cycle events in neurons. Proliferation or death?. Am J Pathol 1999;155:327-9. DOI: https://doi.org/10.1016/S0002-9440(10)65127-9

Zetterberg A, Larsson O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci U S A 1985;82:5365-69. DOI: https://doi.org/10.1073/pnas.82.16.5365

Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol 2006;4:e83. DOI: https://doi.org/10.1371/journal.pbio.0040083

Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 2013;14:329-40. DOI: https://doi.org/10.1038/nrm3591

Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2010;2011:396076.

De Francesco EM, Sotgia F, Lisanti MP. Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018;475:1611-34. DOI: https://doi.org/10.1042/BCJ20170164

Wickström M, Larsson R, Nygren P, Gullbo J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 2011;102:501-8. DOI: https://doi.org/10.1111/j.1349-7006.2010.01826.x

Wang R, Sun Q, Wang P, et al. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget 2016;7:5754-68. DOI: https://doi.org/10.18632/oncotarget.6805

Ikeda N, Nakajima Y, Tokuhara T, et al. Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin Cancer Res 2003;9:1503-8.

Murakami H, Yokoyama A, Kondo K, et al. Circulating aminopeptidase N/CD13 is an independent prognostic factor in patients with non-small cell lung cancer. Clin Cancer Res 2005;11:8674-9. DOI: https://doi.org/10.1158/1078-0432.CCR-05-1005

Yamanaka C, Wada H, Eguchi H, et al. Clinical significance of CD13 and epithelial mesenchymal transition (EMT) markers in hepatocellular carcinoma. Jpn J Clin Oncol 2018;48:52-60. DOI: https://doi.org/10.1093/jjco/hyx157

Adachi E, Hashimoto H, Tsuneyoshi M. Proliferating cell nuclear antigen in hepatocellular carcinoma and small cell liver dysplasia. Cancer 1993;72:2902-9. DOI: https://doi.org/10.1002/1097-0142(19931115)72:10<2902::AID-CNCR2820721008>3.0.CO;2-2

Gade TPF, Tucker E, Nakazawa MS, et al. Ischemia Induces Quiescence and Autophagy Dependence in Hepatocellular Carcinoma. Radiology 2017;283:702-10. DOI: https://doi.org/10.1148/radiol.2017160728

Carr BI, Cavallini A, Lippolis C, et al. Fluoro-Sorafenib (Regorafenib) effects on hepatoma cells: growth inhibition, quiescence, and recovery. J Cell Physiol 2013;228:292-7. DOI: https://doi.org/10.1002/jcp.24148

Carr BI, D’Alessandro R, Refolo MG, et al. Effects of low concentrations of regorafenib and sorafenib on human HCC cell AFP, migration, invasion, and growth in vitro. J Cell Physiol 2013;228:1344-50. DOI: https://doi.org/10.1002/jcp.24291

Zieglschmid V, Hollmann C, Böcher O. Detection of disseminated tumor cells in peripheral blood. Crit Rev Clin Lab Sci 2005;42:155-96. DOI: https://doi.org/10.1080/10408360590913696

Chiappini F. Circulating tumor cells measurements in hepatocellular carcinoma. Int J Hepatol 2012;2012:684802. DOI: https://doi.org/10.1155/2012/684802

Luzzi KJ, MacDonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 1998;153:865-73. DOI: https://doi.org/10.1016/S0002-9440(10)65628-3

Wong IH, Lau WY, Leung T, et al. Hematogenous dissemination of hepatocytes and tumor cells after surgical resection of hepatocellular carcinoma: a quantitative analysis. Clin Cancer Res 1999;5:4021-27.

Kienle P, Weitz J, Klaes R, et al. Detection of isolated disseminated tumor cells in bone marrow and blood samples of patients with hepatocellular carcinoma. Arch Surg 2000;135:213-18. DOI: https://doi.org/10.1001/archsurg.135.2.213

Pua U. Rapid intra-hepatic dissemination of hepatocellular carcinoma with pulmonary metastases following combined loco-regional therapy. Korean J Radiol 2013;14:640-2. DOI: https://doi.org/10.3348/kjr.2013.14.4.640

Minagawa N, Sakihama H, Kobayashi N, et al. A pilot study for cellular detection of circulating tumor cells and disseminated tumor cells of patients with hepatocellular carcinoma. J Clin Oncol 2014;15:11041. DOI: https://doi.org/10.1200/jco.2014.32.15_suppl.11041

Li QG, Yang GS, Yang Q, et al. Disseminated tumor cells homing into rats’ liver: a new possible mechanism of HCC recurrence. World J Gastroenterol 2004;10:903-5. DOI: https://doi.org/10.3748/wjg.v10.i6.903

Shiozawa Y, Berry JE, Eber MR, et al. The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer. Oncotarget 2016;7:41217-32.

Weidenfeld K, Barkan D. EMT and Stemness in Tumor Dormancy and Outgrowth: Are They Intertwined Processes?. Front Oncol 2018;8:381. DOI: https://doi.org/10.3389/fonc.2018.00381

Gay LJ, Malanchi I. The sleeping ugly: Tumour microenvironment’s act to make or break the spell of dormancy. Biochim Biophys Acta Rev Cancer 2017;1868:231-8. DOI: https://doi.org/10.1016/j.bbcan.2017.05.002

Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell 2013;155:750-64. DOI: https://doi.org/10.1016/j.cell.2013.10.029

Balic M, Lin H, Young L, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 2006;12:5615-21. DOI: https://doi.org/10.1158/1078-0432.CCR-06-0169

Shiozawa Y, Berry JE, Eber MR, et al. The marrow niche controls the cancer stem cell phenotype of disseminated prostate cancer. Oncotarget 2016;7:41217-32. DOI: https://doi.org/10.18632/oncotarget.9251

Shiozawa Y, Pedersen EA, Taichman RS. GAS6/Mer axis regulates the homing and survival of the E2A/PBX1-positive B-cell precursor acute lymphoblastic leukemia in the bone marrow niche. Exp Hematol 2010;38:132-40. DOI: https://doi.org/10.1016/j.exphem.2009.11.002

Liu J, Wang K, Yan Z, et al. Axl expression stratifies patients with poor prognosis after hepatectomy for hepatocellular carcinoma. PLoS One 2016;11:e0154767. DOI: https://doi.org/10.1371/journal.pone.0154767

Wu G, Ma Z, Hu W, et al. Molecular insights of Gas6/TAM in cancer development and therapy. Cell Death Dis 2017;8:e2700. DOI: https://doi.org/10.1038/cddis.2017.113

Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 2014;14:611-22. DOI: https://doi.org/10.1038/nrc3793

Shachaf CM, Felsher DW. Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res 2005;65:4471-4. DOI: https://doi.org/10.1158/0008-5472.CAN-05-1172

Duncan JS, Whittle MC, Nakamura K, et al. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 2012;149:307-21. DOI: https://doi.org/10.1016/j.cell.2012.02.053

Shachaf CM, Kopelman AM, Arvanitis C, et al. MYC inactivation uncovers pluripotent differentiation and tumor dormancy in hepatocellular cancer. Nature 2004;431:1112-7. DOI: https://doi.org/10.1038/nature03043

Nishida N, Kitano M, Sakurai T, Kudo M. Molecular Mechanism and Prediction of Sorafenib Chemoresistance in Human Hepatocellular Carcinoma. Dig Dis 2015;33:771-9. DOI: https://doi.org/10.1159/000439102

Wheelock EF, Weinhold KJ, Levich J. The tumor dormant state. Adv Cancer Res 1981;34:107-40. DOI: https://doi.org/10.1016/S0065-230X(08)60240-7

Jiang YX, Yang SW, Li PA, et al. The promotion of the transformation of quiescent gastric cancer stem cells by IL-17 and the underlying mechanisms. Oncogene 2016;36:1256-64. DOI: https://doi.org/10.1038/onc.2016.291

Carr BI, Akkiz H, Üsküdar O, et al. HCC with low- and normal-serum alpha-fetoprotein levels. Clin Pract 2018;15:453-64.

Schraiber Ldos S, de Mattos AA, Zanotelli ML, et al. Alpha-fetoprotein Level Predicts Recurrence After Transplantation in Hepatocellular Carcinoma. Medicine 2016;95:e2478. DOI: https://doi.org/10.1097/MD.0000000000002478

Ma WJ, Wang HY, Teng LS. Correlation analysis of preoperative serum alpha-fetoprotein (AFP) level and prognosis of hepatocellular carcinoma (HCC) after hepatectomy. World J Surg Oncol 2013;11:212. DOI: https://doi.org/10.1186/1477-7819-11-212

Hameed B, Mehta N, Sapisochin G, et al. Alpha-fetoprotein level >1000 ng/mL as an exclusion criterion for liver transplantation in patients with hepatocellular carcinoma meeting the Milan criteria. Liver Transpl 2014;20:945-51. DOI: https://doi.org/10.1002/lt.23904

Mansour AH, Elkhodary TR, Anwar R, et al. Regulation of Cancer Stem Cell Marker (CD133) by Transforming Growth Factor Beta in Hepatocellular Carcinoma. Int J Cancer Res 2014;10:65-73. DOI: https://doi.org/10.3923/ijcr.2014.65.73

Gitlin D. Sites of alpha-fetoprotein synthesis. N Engl J Med 1971;285:1436-7. DOI: https://doi.org/10.1056/NEJM197112162852518

Sell S. Alpha-fetoprotein, stem cells and cancer: how study of the production of alpha-fetoprotein during chemical hepatocarcinogenesis led to reaffirmation of the stem cell theory of cancer. Tumour Biol 2008;29:161-80. DOI: https://doi.org/10.1159/000143402

Sell S, Nichols M, Becker FF, Leffert JL. Hepatocyte proliferation and alpha1-fetoprotein in pregnant, neonatal and partially hepatectomized rets. Cancer Res 1974;34:865-71.

Sell S. Heterogeneity of Alpha-fetoprotein (AFP) and albumin containing cells in normal and pathological permissive states for AFP production: AFP containing cells induced in adult rats recapitulate the appearance of AFP containing hepatocytes in fetal rats. Oncodevelopmental Biol Med 1980;1:93-105.

Ker C, Kuo K, Chang W, et al. Clinical significance of hepatic cancer stem cells. Formosan J Surg 2011;44:205-10. DOI: https://doi.org/10.1016/j.fjs.2011.11.002

Abelev GI, Eraiser TL. Cellular aspects of alpha-fetoprotein reexpression in tumors. Semin Cancer Biol 1999;9:95-107. DOI: https://doi.org/10.1006/scbi.1998.0084

Pardee AD, Shi J, Butterfield LH. Tumor-derived α-fetoprotein impairs the differentiation and T cell stimulatory activity of human dendritic cells. J Immunol 2014;193:5723-32. DOI: https://doi.org/10.4049/jimmunol.1400725

Tomasi TB Jr. Structure and function of alpha-fetoprotein. Annu Rev Med 1977;28:453-65. DOI: https://doi.org/10.1146/annurev.me.28.020177.002321

Crainie M, Semeluk A, Lee KC, Wegmann T. Regulation of constitutive and lymphokine-induced Ia expression by murine alpha-fetoprotein. Cell Immunol 1989;118:41-52. DOI: https://doi.org/10.1016/0008-8749(89)90356-0

Nicholas NS, Panayi GS. Immunosuppressive properties of pregnancy serum on the mixed lymphocyte reaction. Br J Obstet Gynaecol 1986;93:1251-5. DOI: https://doi.org/10.1111/j.1471-0528.1986.tb07860.x

Meng W, Bai B, Bai Z, et al. The immunosuppression role of alpha-fetoprotein in human hepatocellular carcinoma. Discov Med 2016;21:489-94.

Trompezinski S, Migdal C, Tailhardat M. Characterization of early events involved in human dendritic cell maturation induced by sensitizers: Cross talk between MAPK signalling pathways. Toxicol Appl Pharmacol 2008;230:397-406. DOI: https://doi.org/10.1016/j.taap.2008.03.012

Schmidt N, Neumann-Haefelin C, Thimme R. Cellular immune responses to hepatocellular carcinoma: lessons for immunotherapy. Digestive Dis 2012;30:483-91. DOI: https://doi.org/10.1159/000341697

Wang X, Wang Q. Alpha-Fetoprotein and Hepatocellular Carcinoma Immunity. Can J Gastroenterol Hepatol 2018;2018:9049252. DOI: https://doi.org/10.1155/2018/9049252

Published
2020-02-18
Info
Issue
Section
Reviews
Keywords:
Hepatocellular carcinoma, cancer stem cells, mitotic quiescence, dormancy, recurrence.
Statistics
  • Abstract views: 546

  • PDF: 225
  • HTML: 24
How to Cite
Ashokachakkaravarthy, K., & Pottakkat, B. (2020). Mitotic quiescence in hepatic cancer stem cells: An incognito mode. Oncology Reviews, 14(1). https://doi.org/10.4081/oncol.2020.452